Contributions to harmonic analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of Proximate Determinants to Fertility Transition in Bangladesh: An Analysis of Bongaarts’ Fertility Model

Introduction: Fertility transition is outright by prime four proximate determinants (marriage, contraception, postpartum infecundability, and abortion). The present study examines the contributions of proximate determinants on fertility decline and quantifies inhibiting the effect of major proximate determinants according to the socioeconomic characteristics in Bangladesh.<br /...

متن کامل

Harmonic Analysis

Analysis in general tends to revolve around the study of general classes of functions (often real-valued or complex-valued) and operators (which take one or more functions as input, and return some other function as output). Harmonic analysis focuses in particular on the quantitative properties of such functions, and how these quantitative properties change when apply various (often quite expli...

متن کامل

Harmonic Analysis

We use τK to denote the topology of DK (Ω) equipped with such metric. The topology of D (Ω) can be defined precisely. Let β be the collection of all convex balanced sets W ⊂ D (Ω) such that DK (Ω) ∩ W ∈ τK for every compact K ⊂ Ω. Let τ be the collection of all unions of sets of the form φ+W with φ ∈ D (Ω) and W ∈ β. Theorem 1. τ is a topology in D (Ω) and β is a local base for τ . The topology...

متن کامل

Expository Notes on Introduction to Harmonic Analysis

1. (f̂ + g)(ξ) = f̂(ξ) + ĝ(ξ). 2. For any α ∈ C, (α̂f)(ξ) = αf̂(ξ). 3. Let f̄ denote the complex conjugate of f . Then ˆ̄ f(ξ) = f̂(ξ). 4. For λ ∈ R \ {0}, denote fλ(x) = λf(λx). Then f̂λ(ξ) = f̂( ξ λ ). 5. For y ∈ R let (τyf)(t) = f(t− y). Then τ̂yf(ξ) = f̂(ξ)e−2πiξy. 6. |f̂(ξ)| ≤ ‖f‖L1(R). Definition 1.3. The Schwartz space, S(R), is the space of C∞ functions that are rapidly decreasing, in the sense that

متن کامل

Harmonic Shape Analysis: From Fourier to Wavelets

Harmonic analysis studies the representation of functions as the linear combination of basic wave-like functions. It plays a fundamental role in the processing of time-series signals and images. Recent years have witnessed many efforts to adapt the Fourier and wavelet analysis to the domain of 3D shapes. The manifold Fourier analysis relies on the eigenfunctions of the Laplace-Beltrami operator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 1956

ISSN: 0001-5962

DOI: 10.1007/bf02392363